Thermal Expansion, Electrical Resistivity, and Spreading Area of Sn-Zn-In Alloys
Thermal expansion and electrical resistivity of alloys based on Sn-Zn eutectic with 0.5, 1.0, 1.5, and 4.0 wt.% additions of In were studied. Thermal expansion measurements were performed using thermomechanical analysis tester over 223-373 K temperature range. Electrical resistivity measurements wer...
Gespeichert in:
Veröffentlicht in: | Journal of materials engineering and performance 2014-05, Vol.23 (5), p.1524-1529 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermal expansion and electrical resistivity of alloys based on Sn-Zn eutectic with 0.5, 1.0, 1.5, and 4.0 wt.% additions of In were studied. Thermal expansion measurements were performed using thermomechanical analysis tester over 223-373 K temperature range. Electrical resistivity measurements were performed with four-probe method over 298-423 K temperature range. The electrical resistivity of alloys increases linearly with temperature and concentration of In; also coefficient of thermal expansion of the studied alloys increases with In concentration. Scanning electron microscopy revealed simple eutectic microstructure with In dissolved in Sn-rich matrix. The results obtained were compared with the available literature data. Spreading tests on Cu of Sn-8.8Zn alloys with 0.5, 1.0, and 1.5 at.% of In were performed. Wetting tests were performed at 250 °C, by sessile drop method, by means of flux, and wetting times were 3, 8, 15, 30, and 60 min. In general, no clear effect of wetting time on spreading was observed. |
---|---|
ISSN: | 1059-9495 1544-1024 |
DOI: | 10.1007/s11665-013-0825-3 |