The Effect of Nb and S Segregation on the Solidification Cracking of Alloy 52M Weld Overlay on CF8 Stainless Steel

The weld overlay of Alloy 52M (a nickel-based filler metal) on a cast 304 (CF8) stainless steel (SS) was made to simulate overlay welding of the safe end of reactor pressure vessels in nuclear power plants. The deteriorated effect of sulfur on solidification cracking of the Alloy 52M overlay was hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2014-03, Vol.23 (3), p.967-974
Hauptverfasser: Chu, H. A., Young, M. C., Chu, H. C., Tsay, L. W., Chen, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The weld overlay of Alloy 52M (a nickel-based filler metal) on a cast 304 (CF8) stainless steel (SS) was made to simulate overlay welding of the safe end of reactor pressure vessels in nuclear power plants. The deteriorated effect of sulfur on solidification cracking of the Alloy 52M overlay was highlighted by using a CF8 substrate with 0.14 wt.% S. Severe solidification cracking was observed when Alloy 52M was directly overlaid on the CF8 substrate. To lower the cracking susceptibility, ER 308L was deposited on the CF8 SS as a buffer layer before the subsequent deposition of Alloy 52M. Under such circumstances, the region near the weld interface between the SS buffer layer and Alloy 52M overlay was susceptible to solidification cracking. The formation of γ-NbC(N), γ-Laves, and γ-(Fe-Ni-S) eutectic-type constituents at the solidification boundaries was responsible for cracking near the weld interface. Nevertheless, depositing two layers of 308L prior to applying Alloy 52M could effectively reduce the cracking susceptibility of the overlay.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-013-0812-8