Quantile regression with group lasso for classification

Applications of regression models for binary response are very common and models specific to these problems are widely used. Quantile regression for binary response data has recently attracted attention and regularized quantile regression methods have been proposed for high dimensional problems. Whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in data analysis and classification 2016-09, Vol.10 (3), p.375-390
Hauptverfasser: Hashem, Hussein, Vinciotti, Veronica, Alhamzawi, Rahim, Yu, Keming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applications of regression models for binary response are very common and models specific to these problems are widely used. Quantile regression for binary response data has recently attracted attention and regularized quantile regression methods have been proposed for high dimensional problems. When the predictors have a natural group structure, such as in the case of categorical predictors converted into dummy variables, then a group lasso penalty is used in regularized methods. In this paper, we present a Bayesian Gibbs sampling procedure to estimate the parameters of a quantile regression model under a group lasso penalty for classification problems with a binary response. Simulated and real data show a good performance of the proposed method in comparison to mean-based approaches and to quantile-based approaches which do not exploit the group structure of the predictors.
ISSN:1862-5347
1862-5355
DOI:10.1007/s11634-015-0206-x