k-step spatial sign covariance matrix
The Sign Covariance Matrix is an orthogonal equivariant estimator of multivariate scale. It is often used as an easy-to-compute and highly robust estimator. In this paper we propose a k-step version of the Sign Covariance Matrix, which improves its efficiency while keeping the maximal breakdown poin...
Gespeichert in:
Veröffentlicht in: | Advances in data analysis and classification 2010, Vol.4 (2-3), p.137-150 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Sign Covariance Matrix is an orthogonal equivariant estimator of multivariate scale. It is often used as an easy-to-compute and highly robust estimator. In this paper we propose a k-step version of the Sign Covariance Matrix, which improves its efficiency while keeping the maximal breakdown point. If k tends to infinity, Tyler's M-estimator is obtained. It turns out that even for very low values of k, one gets almost the same efficiency as Tyler's M-estimator. |
---|---|
ISSN: | 1862-5355 1862-5347 1862-5355 |
DOI: | 10.1007/s11634-010-0062-7 |