k-step spatial sign covariance matrix

The Sign Covariance Matrix is an orthogonal equivariant estimator of multivariate scale. It is often used as an easy-to-compute and highly robust estimator. In this paper we propose a k-step version of the Sign Covariance Matrix, which improves its efficiency while keeping the maximal breakdown poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in data analysis and classification 2010, Vol.4 (2-3), p.137-150
Hauptverfasser: Croux, C, Dehon, C, Yadine, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Sign Covariance Matrix is an orthogonal equivariant estimator of multivariate scale. It is often used as an easy-to-compute and highly robust estimator. In this paper we propose a k-step version of the Sign Covariance Matrix, which improves its efficiency while keeping the maximal breakdown point. If k tends to infinity, Tyler's M-estimator is obtained. It turns out that even for very low values of k, one gets almost the same efficiency as Tyler's M-estimator.
ISSN:1862-5355
1862-5347
1862-5355
DOI:10.1007/s11634-010-0062-7