Rethinking Polyp Segmentation From An Out-of-distribution Perspective

Unlike existing fully-supervised approaches, we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach. We leverage the ability of masked autoencoders–self-supervised vision transformers trained on a reconstruction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2024-08, Vol.21 (4), p.631-639
Hauptverfasser: Ji, Ge-Peng, Zhang, Jing, Campbell, Dylan, Xiong, Huan, Barnes, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unlike existing fully-supervised approaches, we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach. We leverage the ability of masked autoencoders–self-supervised vision transformers trained on a reconstruction task–to learn in-distribution representations, here, the distribution of healthy colon images. We then perform out-of-distribution reconstruction and inference, with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples. We generate per-pixel anomaly scores for each image by calculating the difference between the input and reconstructed images and use this signal for out-of-distribution (i.e., polyp) segmentation. Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets. Our code is publicly available at https://github.com/GewelsJI/Polyp-OOD .
ISSN:2731-538X
2153-182X
1476-8186
2731-5398
2153-1838
1751-8520
DOI:10.1007/s11633-023-1472-2