Rethinking Polyp Segmentation From An Out-of-distribution Perspective
Unlike existing fully-supervised approaches, we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach. We leverage the ability of masked autoencoders–self-supervised vision transformers trained on a reconstruction...
Gespeichert in:
Veröffentlicht in: | International journal of automation and computing 2024-08, Vol.21 (4), p.631-639 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unlike existing fully-supervised approaches, we rethink colorectal polyp segmentation from an out-of-distribution perspective with a simple but effective self-supervised learning approach. We leverage the ability of masked autoencoders–self-supervised vision transformers trained on a reconstruction task–to learn in-distribution representations, here, the distribution of healthy colon images. We then perform out-of-distribution reconstruction and inference, with feature space standardisation to align the latent distribution of the diverse abnormal samples with the statistics of the healthy samples. We generate per-pixel anomaly scores for each image by calculating the difference between the input and reconstructed images and use this signal for out-of-distribution (i.e., polyp) segmentation. Experimental results on six benchmarks show that our model has excellent segmentation performance and generalises across datasets. Our code is publicly available at
https://github.com/GewelsJI/Polyp-OOD
. |
---|---|
ISSN: | 2731-538X 2153-182X 1476-8186 2731-5398 2153-1838 1751-8520 |
DOI: | 10.1007/s11633-023-1472-2 |