Effect of SiC Particle Size on Properties of SiC Porous Ceramics

We used different SiC particle size as raw materials and via reaction bonding technique to prepare porous SiC membrane supports. The phase composition, microstructure, bending strength, open porosity, and pore size distribution were investigated as a function of SiC particle size and firing temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Wuhan University of Technology. Materials science edition 2022-02, Vol.37 (1), p.13-22
Hauptverfasser: Xu, Xiaohong, Liu, Xing, Wua, Jianfeng, Ma, Sitong, Liu, Shaoheng, Chen, Tiantian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We used different SiC particle size as raw materials and via reaction bonding technique to prepare porous SiC membrane supports. The phase composition, microstructure, bending strength, open porosity, and pore size distribution were investigated as a function of SiC particle size and firing temperature. It is found that the reduction of SiC particle size not only dramatically enhances the bending strength of porous SiC membrane supports, but also slightly reduces the firing temperature duo to smaller SiC particle with higher specific surface area and higher reaction activity. Besides, the open porosity and pore size distribution are dependent on the firing temperature, but insensitive to the SiC particle size due to the pore related characters mainly controlled by the binder. The bending strength increases with the increasing of the firing temperature and with the decreasing of SiC particle size. When the firing temperature was 1 500 °C and SiC average particle size was 447.75 µm, the optimal performance were achieved, the bending strength was 15.18 MPa, the open porosity was 36.02 %, the pore size distributed at 3.09–112.47 µm, and the mean pore size was 14.16 µm.
ISSN:1000-2413
1993-0437
DOI:10.1007/s11595-022-2493-3