On the convergence of algorithms with Tikhonov regularization terms

We consider the strongly convergent modified versions of the Krasnosel’skiĭ-Mann, the forward-backward and the Douglas-Rachford algorithms with Tikhonov regularization terms, introduced by Radu Boţ, Ernö Csetnek and Dennis Meier. We obtain quantitative information for these modified iterations, name...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2021-06, Vol.15 (4), p.1263-1276
Hauptverfasser: Dinis, Bruno, Pinto, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the strongly convergent modified versions of the Krasnosel’skiĭ-Mann, the forward-backward and the Douglas-Rachford algorithms with Tikhonov regularization terms, introduced by Radu Boţ, Ernö Csetnek and Dennis Meier. We obtain quantitative information for these modified iterations, namely rates of asymptotic regularity and metastability. Furthermore, our arguments avoid the use of sequential weak compactness and use only a weak form of the projection argument.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-020-01635-7