On the convergence of algorithms with Tikhonov regularization terms
We consider the strongly convergent modified versions of the Krasnosel’skiĭ-Mann, the forward-backward and the Douglas-Rachford algorithms with Tikhonov regularization terms, introduced by Radu Boţ, Ernö Csetnek and Dennis Meier. We obtain quantitative information for these modified iterations, name...
Gespeichert in:
Veröffentlicht in: | Optimization letters 2021-06, Vol.15 (4), p.1263-1276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the strongly convergent modified versions of the Krasnosel’skiĭ-Mann, the forward-backward and the Douglas-Rachford algorithms with Tikhonov regularization terms, introduced by Radu Boţ, Ernö Csetnek and Dennis Meier. We obtain quantitative information for these modified iterations, namely rates of asymptotic regularity and metastability. Furthermore, our arguments avoid the use of sequential weak compactness and use only a weak form of the projection argument. |
---|---|
ISSN: | 1862-4472 1862-4480 |
DOI: | 10.1007/s11590-020-01635-7 |