Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces

In this paper, a necessary and sufficient condition, such as the Pontryagin’s maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2020-09, Vol.14 (6), p.1519-1532
Hauptverfasser: Bandaliyev, R. A., Mamedov, I. G., Mardanov, M. J., Melikov, T. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a necessary and sufficient condition, such as the Pontryagin’s maxi-mum principle for a fractional optimal control problem with concentrated parameters, is given by the ordinary fractional differential equation with a coefficient in weighted Lebesgue spaces. We discuss a formulation of fractional optimal control problems by a fractional differential equation in the sense of Caputo fractional derivative. The statement of the fractional optimal control problem is studied by using a new version of the increment method that essentially uses the concept of an adjoint equation of the integral form.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-019-01518-6