Optimized ellipse packings in regular polygons

We present model development and numerical solution approaches to the problem of packing a general set of ellipses without overlaps into an optimized polygon. Specifically, for a given set of ellipses, and a chosen integer m  ≥ 3, we minimize the apothem of the regular m -polygon container. Our mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2019-10, Vol.13 (7), p.1583-1613
Hauptverfasser: Kampas, Frank J., Castillo, Ignacio, Pintér, János D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present model development and numerical solution approaches to the problem of packing a general set of ellipses without overlaps into an optimized polygon. Specifically, for a given set of ellipses, and a chosen integer m  ≥ 3, we minimize the apothem of the regular m -polygon container. Our modeling and solution strategy is based on the concept of embedded Lagrange multipliers. To solve models with up to n  ≤ 10 ellipses, we use the LGO solver suite for global–local nonlinear optimization. In order to reduce increasing runtimes, for model instances with 10 ≤  n  ≤ 20 ellipses, we apply local search launching the Ipopt solver from selected random starting points. The numerical results demonstrate the applicability of our modeling and optimization approach to a broad class of highly non-convex ellipse packing problems, by consistently returning good quality feasible solutions in all (231) illustrative model instances considered here.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-019-01423-y