Matrix monotonicity and self-concordance: how to handle quantum entropy in optimization problems

Let g be a continuously differentiable function whose derivative is matrix monotone on the positive semi-axis. Such a function induces a function φ ( x ) = tr ( g ( x ) ) on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that φ ( x ) - ln det ( x ) is a self-concordant functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2017-12, Vol.11 (8), p.1513-1526
Hauptverfasser: Faybusovich, Leonid, Tsuchiya, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let g be a continuously differentiable function whose derivative is matrix monotone on the positive semi-axis. Such a function induces a function φ ( x ) = tr ( g ( x ) ) on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that φ ( x ) - ln det ( x ) is a self-concordant function on the interior of the cone. We also show that - ln ( t - φ ( x ) ) - ln det ( x ) is ( r + 1 ) -self-concordant barrier on the epigraph of φ , where r is the rank of the Jordan algebra. The case ϕ ( x ) = tr ( x ln x ) is discussed in detail.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-017-1145-6