Matrix monotonicity and self-concordance: how to handle quantum entropy in optimization problems
Let g be a continuously differentiable function whose derivative is matrix monotone on the positive semi-axis. Such a function induces a function φ ( x ) = tr ( g ( x ) ) on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that φ ( x ) - ln det ( x ) is a self-concordant functio...
Gespeichert in:
Veröffentlicht in: | Optimization letters 2017-12, Vol.11 (8), p.1513-1526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
g
be a continuously differentiable function whose derivative is matrix monotone on the positive semi-axis. Such a function induces a function
φ
(
x
)
=
tr
(
g
(
x
)
)
on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that
φ
(
x
)
-
ln
det
(
x
)
is a self-concordant function on the interior of the cone. We also show that
-
ln
(
t
-
φ
(
x
)
)
-
ln
det
(
x
)
is
(
r
+
1
)
-self-concordant barrier on the epigraph of
φ
,
where
r
is the rank of the Jordan algebra. The case
ϕ
(
x
)
=
tr
(
x
ln
x
)
is discussed in detail. |
---|---|
ISSN: | 1862-4472 1862-4480 |
DOI: | 10.1007/s11590-017-1145-6 |