Construction algorithms for a class of monotone variational inequalities
This paper is devoted to solve the following monotone variational inequality of finding x ∗ ∈ Fix ( T ) such that ⟨ A x ∗ , x - x ∗ ⟩ ≥ 0 , ∀ x ∈ Fix ( T ) , where A is a monotone operator and Fix ( T ) is the set of fixed points of nonexpansive operator T . For this purpose, we construct an implici...
Gespeichert in:
Veröffentlicht in: | Optimization letters 2016-10, Vol.10 (7), p.1519-1528 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to solve the following monotone variational inequality of finding
x
∗
∈
Fix
(
T
)
such that
⟨
A
x
∗
,
x
-
x
∗
⟩
≥
0
,
∀
x
∈
Fix
(
T
)
,
where
A
is a monotone operator and
Fix
(
T
)
is the set of fixed points of nonexpansive operator
T
. For this purpose, we construct an implicit algorithm and prove its convergence hierarchical to the solution of above monotone variational inequality. |
---|---|
ISSN: | 1862-4472 1862-4480 |
DOI: | 10.1007/s11590-015-0954-8 |