On optimal probabilities in stochastic coordinate descent methods
We propose and analyze a new parallel coordinate descent method—NSync—in which at each iteration a random subset of coordinates is updated, in parallel, allowing for the subsets to be chosen using an arbitrary probability law . This is the first method of this type. We derive convergence rates under...
Gespeichert in:
Veröffentlicht in: | Optimization letters 2016-08, Vol.10 (6), p.1233-1243 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose and analyze a new parallel coordinate descent method—NSync—in which at each iteration a random subset of coordinates is updated, in parallel, allowing for the subsets to be chosen using an
arbitrary probability law
. This is the first method of this type. We derive convergence rates under a strong convexity assumption, and comment on how to assign probabilities to the sets to optimize the bound. The complexity and practical performance of the method can outperform its uniform variant by an order of magnitude. Surprisingly, the strategy of updating a single randomly selected coordinate per iteration—with optimal probabilities—may require less iterations, both in theory and practice, than the strategy of updating all coordinates at every iteration. |
---|---|
ISSN: | 1862-4472 1862-4480 |
DOI: | 10.1007/s11590-015-0916-1 |