On optimal probabilities in stochastic coordinate descent methods

We propose and analyze a new parallel coordinate descent method—NSync—in which at each iteration a random subset of coordinates is updated, in parallel, allowing for the subsets to be chosen using an arbitrary probability law . This is the first method of this type. We derive convergence rates under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimization letters 2016-08, Vol.10 (6), p.1233-1243
Hauptverfasser: Richtárik, Peter, Takáč, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and analyze a new parallel coordinate descent method—NSync—in which at each iteration a random subset of coordinates is updated, in parallel, allowing for the subsets to be chosen using an arbitrary probability law . This is the first method of this type. We derive convergence rates under a strong convexity assumption, and comment on how to assign probabilities to the sets to optimize the bound. The complexity and practical performance of the method can outperform its uniform variant by an order of magnitude. Surprisingly, the strategy of updating a single randomly selected coordinate per iteration—with optimal probabilities—may require less iterations, both in theory and practice, than the strategy of updating all coordinates at every iteration.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-015-0916-1