Paneitz-Branson invariants on non Einstein manifolds
Let ( M , g ) be a smooth compact Riemannian manifold of dimension n ≥ 5 . Denote P g n the Paneitz-Branson operator. In this paper, we define the Paneitz-Branson invariants μ , μ 1 and μ 2 . We study when they are attained by a metric and this is equivalent to show the existence of positive soluti...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2024-11, Vol.73 (5), p.2439-2476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (
M
,
g
) be a smooth compact Riemannian manifold of dimension
n
≥
5
. Denote
P
g
n
the Paneitz-Branson operator. In this paper, we define the Paneitz-Branson invariants
μ
,
μ
1
and
μ
2
. We study when they are attained by a metric and this is equivalent to show the existence of positive solutions (and changing-sign solutions) to the nonlinear Paneitz-Branson equation
P
g
n
u
=
C
|
u
|
N
-
2
u
where
C
is a certain constant and
N
is a critical exponent. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-023-00780-2 |