Paneitz-Branson invariants on non Einstein manifolds

Let ( M ,  g ) be a smooth compact Riemannian manifold of dimension n ≥ 5 . Denote P g n the Paneitz-Branson operator. In this paper, we define the Paneitz-Branson invariants μ , μ 1 and μ 2 . We study when they are attained by a metric and this is equivalent to show the existence of positive soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2024-11, Vol.73 (5), p.2439-2476
Hauptverfasser: Touati, Mohamed, Boughazi, Hichem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( M ,  g ) be a smooth compact Riemannian manifold of dimension n ≥ 5 . Denote P g n the Paneitz-Branson operator. In this paper, we define the Paneitz-Branson invariants μ , μ 1 and μ 2 . We study when they are attained by a metric and this is equivalent to show the existence of positive solutions (and changing-sign solutions) to the nonlinear Paneitz-Branson equation P g n u = C | u | N - 2 u where C is a certain constant and N is a critical exponent.
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-023-00780-2