Finite simple groups the nilpotent residuals of all of whose subgroups are TI-subgroups
Let G be a finite group. A subgroup H of G is called a TI -subgroup of G if H ∩ H x = 1 or H for all x ∈ G . G N = ⋂ { N ⊴ G | G / N is nilpotent } is called the nilpotent residual of G . In this paper, we show that a non-abelian finite simple group the nilpotent residuals of all of its subgroups ar...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2024-11, Vol.73 (5), p.2605-2615 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a finite group. A subgroup
H
of
G
is called a
TI
-subgroup of
G
if
H
∩
H
x
=
1
or
H
for all
x
∈
G
.
G
N
=
⋂
{
N
⊴
G
|
G
/
N
is nilpotent
}
is called the nilpotent residual of
G
. In this paper, we show that a non-abelian finite simple group the nilpotent residuals of all of its subgroups are
TI
-subgroups is isomorphic to either
P
S
L
(
2
,
2
p
)
for some prime
p
, to
PSL
(2, 7) or to the Suzuki group
S
z
(
2
p
)
for some odd prime
p
. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-023-00766-0 |