Finite simple groups the nilpotent residuals of all of whose subgroups are TI-subgroups

Let G be a finite group. A subgroup H of G is called a TI -subgroup of G if H ∩ H x = 1 or H for all x ∈ G . G N = ⋂ { N ⊴ G | G / N is nilpotent } is called the nilpotent residual of G . In this paper, we show that a non-abelian finite simple group the nilpotent residuals of all of its subgroups ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2024-11, Vol.73 (5), p.2605-2615
Hauptverfasser: Meng, Wei, Lu, Jiakuan, Zhang, Boru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a finite group. A subgroup H of G is called a TI -subgroup of G if H ∩ H x = 1 or H for all x ∈ G . G N = ⋂ { N ⊴ G | G / N is nilpotent } is called the nilpotent residual of G . In this paper, we show that a non-abelian finite simple group the nilpotent residuals of all of its subgroups are TI -subgroups is isomorphic to either P S L ( 2 , 2 p ) for some prime p , to PSL (2, 7) or to the Suzuki group S z ( 2 p ) for some odd prime p .
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-023-00766-0