Complex solutions to the higher-order nonlinear boussinesq type wave equation transform
The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2024-09, Vol.73 (4), p.1793-1800 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The higher-order nonlinear Boussinesq type wave equation describes the propagation of small amplitude long capillary–gravity waves on the surface of shallow water. Mathematical physics, shallow water waves, fluid dynamics, and fluid movement are all examples of this model. To acquire exact solutions in the form of solitary wave and complex functions solutions, we use the
m
+
1
G
′
-expansion method. These results aid mathematicians and physicians in comprehending the model's physical phenomena. This approach may be employed on different models in order to generate whole new solutions for nonlinear PDEs encountered in mathematical physics. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-022-00698-1 |