On the asymptotic behavior of the parameter estimators for some diffusion processes: application to neuronal models

We consider a sample of i.i.d. times and we interpret each item as the first-passage time (FPT) of a diffusion process through a constant boundary. The problem is to estimate the parameters characterizing the underlying diffusion process through the experimentally observable FPT’s. Recently in Ditle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ricerche di matematica 2009-06, Vol.58 (1), p.103-127
Hauptverfasser: Giraudo, Maria Teresa, Mininni, Rosa Maria, Sacerdote, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a sample of i.i.d. times and we interpret each item as the first-passage time (FPT) of a diffusion process through a constant boundary. The problem is to estimate the parameters characterizing the underlying diffusion process through the experimentally observable FPT’s. Recently in Ditlevsen and Lánský (Phys Rev E 71, 2005) and Ditlevsen and Lánský (Phys Rev E 73, 2006) closed form estimators have been proposed for neurobiological applications. Here we study the asymptotic properties (consistency and asymptotic normality) of the class of moment type estimators for parameters of diffusion processes like those in Ditlevsen and Lánský (Phys Rev E 71, 2005) and Ditlevsen and Lánský (Phys Rev E 73, 2006). Furthermore, to make our results useful for application instances we establish upper bounds for the rate of convergence of the empirical distribution of each estimator to the normal density. Applications are also considered by means of simulated experiments in a neurobiological context.
ISSN:0035-5038
1827-3491
DOI:10.1007/s11587-009-0050-4