On the asymptotic behavior of the parameter estimators for some diffusion processes: application to neuronal models
We consider a sample of i.i.d. times and we interpret each item as the first-passage time (FPT) of a diffusion process through a constant boundary. The problem is to estimate the parameters characterizing the underlying diffusion process through the experimentally observable FPT’s. Recently in Ditle...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2009-06, Vol.58 (1), p.103-127 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a sample
of i.i.d. times and we interpret each item as the first-passage time (FPT) of a diffusion process through a constant boundary. The problem is to estimate the parameters characterizing the underlying diffusion process through the experimentally observable FPT’s. Recently in Ditlevsen and Lánský (Phys Rev E 71, 2005) and Ditlevsen and Lánský (Phys Rev E 73, 2006) closed form estimators have been proposed for neurobiological applications. Here we study the asymptotic properties (consistency and asymptotic normality) of the class of moment type estimators for parameters of diffusion processes like those in Ditlevsen and Lánský (Phys Rev E 71, 2005) and Ditlevsen and Lánský (Phys Rev E 73, 2006). Furthermore, to make our results useful for application instances we establish upper bounds for the rate of convergence of the empirical distribution of each estimator to the normal density. Applications are also considered by means of simulated experiments in a neurobiological context. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-009-0050-4 |