Fabrication of LSM-SDC composite cathodes for intermediate-temperature solid oxide fuel cells

Microstructure, interfacial resistance, and activation energy for composite cathodes consisting of 50 wt% (La 0.85 Sr 0.15 ) 0.9 MnO 3- δ (LSM) and 50 wt% Sm 0.2 Ce 0.8 O 1.90 (SDC) were studied for intermediate-temperature solid oxide fuel cells based on SDC electrolytes. Microstructure and interfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2015-08, Vol.21 (8), p.2253-2258
Hauptverfasser: Fan, Xing, You, Chun-Yan, Zhu, Ji-Liang, Chen, Lu, Xia, Chang-Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microstructure, interfacial resistance, and activation energy for composite cathodes consisting of 50 wt% (La 0.85 Sr 0.15 ) 0.9 MnO 3- δ (LSM) and 50 wt% Sm 0.2 Ce 0.8 O 1.90 (SDC) were studied for intermediate-temperature solid oxide fuel cells based on SDC electrolytes. Microstructure and interfacial resistance were greatly influenced by the characteristics of starting powder and temperatures sintering the electrodes. Optimum sintering temperatures were 1100 and 950 °C, respectively, for electrodes with SDC prepared using oxalate coprecipitation technique (OCP) and glycine-nitrate process (GNP). Area-specific resistances determined using impedance spectroscopy were 0.47 and 0.92 Ω cm 2 at 800 °C for LSM-SDC/OCP and LSM-SDC/GNP, respectively. The high electrochemical performance is attributed to small grain size, high porosity, and high in-plane electrical conductivity of composite cathode, demonstrating the dramatic effects of microstructure on electrode performance. To increase the electrode performance, it is critical to enhance the diffusion rate of oxygen species.
ISSN:0947-7047
1862-0760
DOI:10.1007/s11581-015-1396-0