Automatic optimum phase point selection based on centerline consistency for 3D rotational coronary angiography
Objective The quality of three-dimensional (3D) reconstructions of the coronary arteries from rotational coronary angiography depends on the selected phase point. Inconsistencies in the projection data, due to heart motion, degrade the image quality. Here, a method for the automatic selection of the...
Gespeichert in:
Veröffentlicht in: | International journal for computer assisted radiology and surgery 2008-09, Vol.3 (3-4), p.355-361 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective
The quality of three-dimensional (3D) reconstructions of the coronary arteries from rotational coronary angiography depends on the selected phase point. Inconsistencies in the projection data, due to heart motion, degrade the image quality. Here, a method for the automatic selection of the optimum phase points for reconstruction is presented.
Methods
The method aims at determining heart phases with minimum inconsistency of the motion state in the selected projection data. This is achieved by calculating an error measure which describes the inconsistency of the vessel centerline geometry in three dimensions for all cardiac phases. The phases with minimum inconsistency are then selected as optimum reconstruction phases. The method’s feasibility was tested on 22 clinical cases. One late-diastolic and one end-systolic optimum phase were determined automatically for each case. For comparison, three observers visually determined the optimum phases.
Results
Overall, 82% of the 44 automatically determined phases delivered optimum image quality, only 5% showed considerably lower quality than the visually determined optimum phase. For all 22 cases at least one of the two automatically determined phases yielded optimum quality.
Conclusion
In a first test the method proved to robustly determine optimum reconstruction phase points. |
---|---|
ISSN: | 1861-6410 1861-6429 |
DOI: | 10.1007/s11548-008-0233-6 |