The Chern–Osserman inequality for minimal surfaces in a Cartan–Hadamard manifold with strictly negative sectional curvatures

We state and prove a Chern–Osserman-type inequality in terms of the volume growth for minimal surfaces S which have finite total extrinsic curvature and are properly immersed in a Cartan–Hadamard manifold N with sectional curvatures bounded from above by a negative quantity K N ≤ b

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arkiv för matematik 2014-04, Vol.52 (1), p.61-92
Hauptverfasser: Esteve, Antonio, Palmer, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We state and prove a Chern–Osserman-type inequality in terms of the volume growth for minimal surfaces S which have finite total extrinsic curvature and are properly immersed in a Cartan–Hadamard manifold N with sectional curvatures bounded from above by a negative quantity K N ≤ b
ISSN:0004-2080
1871-2487
DOI:10.1007/s11512-013-0182-3