Review of small aspheric glass lens molding technologies
Aspheric lens can eliminate spherical aberrations, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical characteristics. The demand for aspheric lens has increased in recent years becaus...
Gespeichert in:
Veröffentlicht in: | Frontiers of Mechanical Engineering 2017-03, Vol.12 (1), p.66-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aspheric lens can eliminate spherical aberrations, coma, astigmatism, field distortions, and other adverse factors. This type of lens can also reduce the loss of light energy and obtain high-quality images and optical characteristics. The demand for aspheric lens has increased in recent years because of its advantageous use in the electronics industry, particularly for compact, portable devices and high-performance products. As an advanced manufacturing technology, the glass lens molding process has been recognized as a low-cost and high-efficiency manufacturing technology for machining small-diameter aspheric lens for industrial production. However, the residual stress and profile deviation of the glass lens are greatly affected by various key technologies for glass lens molding, including glass and mold-die material forming, mold-die machining, and lens molding. These key technical factors, which affect the quality of the glass lens molding process, are systematically discussed and reviewed to solve the existing technical bottlenecks and problems, as well as to predict the potential applicability of glass lens molding in the future. |
---|---|
ISSN: | 2095-0233 2095-0241 |
DOI: | 10.1007/s11465-017-0417-2 |