Asymptotic Stability of Equilibrium States with Variable Temperature Gradient to the Boussinesq System Without Thermal Conduction

We study the asymptotic stability of equilibrium states with positive (and variable) temperature gradient to the Boussinesq system without thermal conduction in the strip domain ℝ 2 × (0, 1). It is shown that a unique global-intime solution exists if the initial data is close enough to such an equil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Mathematics 2024, Vol.19 (1), p.47-71
Hauptverfasser: Li, Jianguo, Sun, Yongzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic stability of equilibrium states with positive (and variable) temperature gradient to the Boussinesq system without thermal conduction in the strip domain ℝ 2 × (0, 1). It is shown that a unique global-intime solution exists if the initial data is close enough to such an equilibrium state with suitable boundary conditions. Moreover, as time goes to infinity, the solution converges to the corresponding equilibrium state with explicit decay rates. Such a result reflects the well-known Rayleigh–Taylor stability phenomenon in the fluid motion.
ISSN:2731-8648
1673-3452
2731-8656
1673-3576
DOI:10.1007/s11464-023-0093-y