A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces
In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.
Gespeichert in:
Veröffentlicht in: | Frontiers of Mathematics 2024, Vol.19 (6), p.1007-1024 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition. |
---|---|
ISSN: | 2731-8648 1673-3452 2731-8656 1673-3576 |
DOI: | 10.1007/s11464-022-0291-z |