A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces

In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Mathematics 2024, Vol.19 (6), p.1007-1024
Hauptverfasser: Fei, Jie, Jiao, Xiaoxiang, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.
ISSN:2731-8648
1673-3452
2731-8656
1673-3576
DOI:10.1007/s11464-022-0291-z