On the Nonexistence of a Holomorphic Isometric Immersion from a One-dimensional Singular Non-CSC Extremal Kähler Metric to ℂPN
Usually we call a one-dimensional singular non-CSC extremal Kähler metric HCMU metric. In this article, we will prove that there does not exist a local holomorphic isometric immersion from an HCMU metric to ℂ P N for N ≥ 2. The main method is to use the metric structure equations associated with the...
Gespeichert in:
Veröffentlicht in: | Frontiers of Mathematics 2023-11, Vol.18 (6), p.1253-1268 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Usually we call a one-dimensional singular non-CSC extremal Kähler metric HCMU metric. In this article, we will prove that there does not exist a local holomorphic isometric immersion from an HCMU metric to ℂ
P
N
for
N
≥ 2. The main method is to use the metric structure equations associated with the Frenet frame along a holomorphic curve in ℂ
P
N
. |
---|---|
ISSN: | 2731-8648 1673-3452 2731-8656 1673-3576 |
DOI: | 10.1007/s11464-021-0231-3 |