Response Solutions for KdV Equations with Liouvillean Frequency

In this paper, we prove an infinite dimensional KAM (Kolmogorov–Arnold–Moser) theorem, which can be used to the KdV equations u t + ∂ x x x u − ε ∂ x f ( ω t , x , u ) = 0 , where ω = ξ ω ¯ , ω ¯ = ( 1 , α ) is Liouvillean forced frequency and f is real analytic. We obtain a C ∞ smooth response solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Mathematics 2023-09, Vol.18 (5), p.1083-1112
Hauptverfasser: Chang, Ningning, Geng, Jiansheng, Sun, Yingnan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove an infinite dimensional KAM (Kolmogorov–Arnold–Moser) theorem, which can be used to the KdV equations u t + ∂ x x x u − ε ∂ x f ( ω t , x , u ) = 0 , where ω = ξ ω ¯ , ω ¯ = ( 1 , α ) is Liouvillean forced frequency and f is real analytic. We obtain a C ∞ smooth response solution under zero mean-value periodic boundary conditions. The proof is based on a modified infinite dimensional KAM theory.
ISSN:2731-8648
1673-3452
2731-8656
1673-3576
DOI:10.1007/s11464-021-0099-2