Response Solutions for KdV Equations with Liouvillean Frequency
In this paper, we prove an infinite dimensional KAM (Kolmogorov–Arnold–Moser) theorem, which can be used to the KdV equations u t + ∂ x x x u − ε ∂ x f ( ω t , x , u ) = 0 , where ω = ξ ω ¯ , ω ¯ = ( 1 , α ) is Liouvillean forced frequency and f is real analytic. We obtain a C ∞ smooth response solu...
Gespeichert in:
Veröffentlicht in: | Frontiers of Mathematics 2023-09, Vol.18 (5), p.1083-1112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove an infinite dimensional KAM (Kolmogorov–Arnold–Moser) theorem, which can be used to the KdV equations
u
t
+
∂
x
x
x
u
−
ε
∂
x
f
(
ω
t
,
x
,
u
)
=
0
,
where
ω
=
ξ
ω
¯
,
ω
¯
=
(
1
,
α
)
is Liouvillean forced frequency and f is real analytic. We obtain a
C
∞
smooth response solution under zero mean-value periodic boundary conditions. The proof is based on a modified infinite dimensional KAM theory. |
---|---|
ISSN: | 2731-8648 1673-3452 2731-8656 1673-3576 |
DOI: | 10.1007/s11464-021-0099-2 |