The development of silicate matrix phosphors with broad excitation band for phosphor-convered white LED

This paper briefly reviews the recent progress in alkaline earth silicate host luminescent materials with broad excitation band for phosphor-convered white LED. Among them, the Sr-rich binary phases (Sr, Ba, Ca, Mg)2SiO4:Eu^2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu^2+ are excellent phosphors for blue LED chip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese science bulletin 2008-10, Vol.53 (19), p.2923-2930
Hauptverfasser: Luo, XiXian, Cao, WangHe, Sun, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper briefly reviews the recent progress in alkaline earth silicate host luminescent materials with broad excitation band for phosphor-convered white LED. Among them, the Sr-rich binary phases (Sr, Ba, Ca, Mg)2SiO4:Eu^2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu^2+ are excellent phosphors for blue LED chip white LED. They have very broad excitation bands and exhibit strong absorption of blue radiation in the range of 450-480 nm. And they exhibit green and yellow-orange emission under the InGaN blue LED chip radiation, respectively. The luminous efficiency of InGaN-based (Sr, Ba, Ca, Mg)=SiO4: Eu^2+ and (Sr, Ba, Ca, Mg)3SiO5:Eu^2+ is about 70-80 lm/W, about 95 %-105% that of the InGaN-based YAG :Ce, while the correlated color temperature is between 4600--11000 K. Trinary alkaline earth silicate host luminescent materials MO(M=Sr, Ca, Ba)-Mg(Zn)O-SiO2 show strong absorption of deep blue/near-ultraviolet radiation in the range of 370-440 nm. They can convert the deep blue/near-ultraviolet radiation into blue, green, and red emissions to generate white light. The realization of high-performance white-light LEDs by this approach presents excellent chromaticity and high color rendering index, and the application disadvantages caused by the mixture of various matrixes can be avoided. Moreover, the application prospects and the trends of research and development of alkaline earth silicate phosphors are also discussed.
ISSN:1001-6538
2095-9273
1861-9541
2095-9281
DOI:10.1007/s11434-008-0392-4