Nonexistence of the NNSC-cobordism of Bartnik data
In this paper, we consider the problem of the nonnegative scalar curvature (NNSC)-cobordism of Bartnik data ( ∑ 1 n − 1 , γ 1 , H 1 ) and ( ∑ 2 n − 1 , γ 2 , H 2 ) . We prove that given two metrics γ 1 and γ 2 on S n −1 (3 ⩽ n ⩽ 7) with H 1 fixed, then ( S n −1 , γ 1 , H 1 ) and ( S n −1 , γ 2 , H 2...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2021-07, Vol.64 (7), p.1357-1372 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the problem of the nonnegative scalar curvature (NNSC)-cobordism of Bartnik data
(
∑
1
n
−
1
,
γ
1
,
H
1
)
and
(
∑
2
n
−
1
,
γ
2
,
H
2
)
. We prove that given two metrics
γ
1
and
γ
2
on
S
n
−1
(3 ⩽
n
⩽ 7) with
H
1
fixed, then (
S
n
−1
,
γ
1
,
H
1
) and (
S
n
−1
,
γ
2
,
H
2
) admit no NNSC-cobordism provided the prescribed mean curvature
H
2
is large enough (see Theorem 1.3). Moreover, we show that for
n
= 3, a much weaker condition that the total mean curvature
∫
S
2
H
2
d
μ
γ
2
is large enough rules out NNSC-cobordisms (see Theorem 1.2); if we require the Gaussian curvature of
γ
2
to be positive, we get a criterion for nonexistence of the trivial NNSC-cobordism by using the Hawking mass and the Brown-York mass (see Theorem 1.1). For the general topology case, we prove that
(
Σ
1
n
−
1
,
γ
1
,
0
)
and
(
Σ
2
n
−
1
,
γ
2
,
H
2
)
admit no NNSC-cobordism provided the prescribed mean curvature
H
2
is large enough (see Theorem 1.5). |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-020-1844-8 |