Integral closure of a quartic extension

Let R be a Noetherian unique factorization domain such that 2 and 3 are units,and let A=R[α]be a quartic extension over R by adding a rootαof an irreducible quartic polynomial p(z)=z^4+az^2+bz+c over R.We will compute explicitly the integral closure of A in its fraction field,which is based on a pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2015-03, Vol.58 (3), p.553-564
Hauptverfasser: Tan, ShengLi, Xie, DaJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a Noetherian unique factorization domain such that 2 and 3 are units,and let A=R[α]be a quartic extension over R by adding a rootαof an irreducible quartic polynomial p(z)=z^4+az^2+bz+c over R.We will compute explicitly the integral closure of A in its fraction field,which is based on a proper factorization of the coefficients and the algebraic invariants of p(z).In fact,we get the factorization by resolving the singularities of a plane curve defined by z^4+a(x)z^2+b(x)z+c(x)=0.The integral closure is expressed as a syzygy module and the syzygy equations are given explicitly.We compute also the ramifications of the integral closure over R.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-014-4919-7