On a family involving R.L. Cohen’s ζ-element (II)
In 1981, Cohen constructed an infinite family of homotopy elements ζ k ∈ π * ( S ) represented by in the Adams spectral sequence, where p > 2 and k ⩾ 1. In the paper, we make use of the Adams spectral sequence and the May spectral sequence to prove that the composite map ζ n −1 β 2 γ s +3 is nont...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2015-08, Vol.58 (8), p.1745-1752 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1981, Cohen constructed an infinite family of homotopy elements
ζ
k
∈ π
*
(
S
) represented by
in the Adams spectral sequence, where
p
> 2 and
k
⩾ 1. In the paper, we make use of the Adams spectral sequence and the May spectral sequence to prove that the composite map
ζ
n
−1
β
2
γ
s
+3
is nontrivial in the stable homotopy groups of spheres
π
t
(
s,n
)−
s
−8
(
S
), where
p
⩾ 7,
n
> 3, 0 ⩽
s
<
p
− 5 and
t
(
s, n
) = 2(
p
− 1)[
p
n
+ (
s
+ 3)
p
2
+ (
s
+ 4)
p
+ (
s
+ 3)]+
s
. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-014-4904-1 |