The double Ringel-Hall algebra on a hereditary abelian finitary length category

In this paper, we study the category ℋ ( ρ ) of semi-stable coherent sheaves of a fixed slope ρ over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of ℋ ( ρ ) and relate it to generalized Kac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2011-02, Vol.54 (2), p.381-397
Hauptverfasser: Dou, RuJing, Liu, QunHua, Xiao, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the category ℋ ( ρ ) of semi-stable coherent sheaves of a fixed slope ρ over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of ℋ ( ρ ) and relate it to generalized Kac-Moody Lie algebras. Finally we obtain the Kac type theorem to describe the indecomposable objects in this category, i.e. the indecomposable semi-stable sheaves.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-010-4143-z