The double Ringel-Hall algebra on a hereditary abelian finitary length category
In this paper, we study the category ℋ ( ρ ) of semi-stable coherent sheaves of a fixed slope ρ over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of ℋ ( ρ ) and relate it to generalized Kac...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2011-02, Vol.54 (2), p.381-397 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the category
ℋ
(
ρ
)
of semi-stable coherent sheaves of a fixed slope
ρ
over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of
ℋ
(
ρ
)
and relate it to generalized Kac-Moody Lie algebras. Finally we obtain the Kac type theorem to describe the indecomposable objects in this category, i.e. the indecomposable semi-stable sheaves. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-010-4143-z |