Double Penalized Quantile Regression for the Linear Mixed Effects Model

This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2020-12, Vol.33 (6), p.2080-2102
Hauptverfasser: Li, Hanfang, Liu, Yuan, Luo, Youxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient. The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients. Simulation studies show that the new method is robust to a variety of error distributions at different quantiles. It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects. For the high dimensional data scenarios, the new method still can correctly select important variables and exclude noise variables with high probability. A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.
ISSN:1009-6124
1559-7067
DOI:10.1007/s11424-020-9065-4