VARIABLE SELECTION FOR RECURRENT EVENT DATA WITH INFORMATIVE CENSORING

Recurrent events data with a terminal event (e.g., death) often arise in clinical and ob- servational studies. Variable selection is an important issue in all regression analysis. In this paper, the authors first propose the estimation methods to select the significant variables, and then prove the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2012-10, Vol.25 (5), p.987-997
Hauptverfasser: Cheng, Ximing, Luo, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recurrent events data with a terminal event (e.g., death) often arise in clinical and ob- servational studies. Variable selection is an important issue in all regression analysis. In this paper, the authors first propose the estimation methods to select the significant variables, and then prove the asymptotic behavior of the proposed estimator. Furthermore, the authors discuss the computing algorithm to assess the proposed estimator via the linear function approximation and generalized cross validation method for determination of the tuning parameters. Finally, the finite sample estimation for the asymptotical covariance matrix is also proposed.
ISSN:1009-6124
1559-7067
DOI:10.1007/s11424-012-1098-x