VARIATIONAL DISCRETIZATION FOR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH CONTROL CONSTRAINTS

This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard fini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2012-10, Vol.25 (5), p.880-895
Hauptverfasser: Tang, Yuelong, Chen, Yanping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.
ISSN:1009-6124
1559-7067
DOI:10.1007/s11424-012-0279-y