Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar

Numerous studies have explored the adsorption of cadmium (Cd) and arsenic (As) by iron (Fe)-modified biochar, but few studies have examined in-depth the similarities and differences in the adsorption behavior of different iron types on Cd and As. In this study, sewage sludge biochar (BC) was co-pyro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2023-03, Vol.30 (13), p.39154-39168
Hauptverfasser: Wang, Qi, Wen, Jia, Yang, Lisha, Cui, Hongsheng, Zeng, Tianjing, Huang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Numerous studies have explored the adsorption of cadmium (Cd) and arsenic (As) by iron (Fe)-modified biochar, but few studies have examined in-depth the similarities and differences in the adsorption behavior of different iron types on Cd and As. In this study, sewage sludge biochar (BC) was co-pyrolyzed with self-made Fe minerals (magnetite, hematite, ferrihydrite, goethite, and schwertmannite) to treat Cd and As co-contaminated water. The adsorption of Cd and As on the Fe-modified biochar was further analyzed by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics combined with a series of characterization experiments. Both SEM-EDX and XRD results confirmed the successful loading of iron minerals onto BC. Both adsorption kinetics and adsorption isotherms experiments showed that the adsorption of Cd and As by BC and the other five Fe-modified biochar was mainly controlled by chemical interactions. The results also indicated that goethite biochar (GtBC) was the most effective for the adsorption of Cd among the five Fe-modified biochar. Ferrihydrite biochar (FhBC) formed more diverse complexes, coupled with the relatively stronger electrons accepting ability, thus making it more effective for As adsorption than the others. Additionally, GtBC and hematite biochar (HmBC) were found effective for the adsorption of both Cd and As, whereas MBC was not found effective for either metal. Furthermore, combined with XPS results, the adsorption of Cd by the materials was mainly governed by Cd 2+ -π interactions, complexation precipitation, and co-precipitation, while oxidation reactions also existed for As.
ISSN:1614-7499
1614-7499
DOI:10.1007/s11356-022-24952-z