Diffusion Driven Accelerated Stress Corrosion Cracking in an Acrylic Polymer

The dynamic evolution and mechanism of accelerated stress corrosion cracking (aSCC) in anacrylic (PMMA–poly methyl 2-methylpropenoate) polymer sample have been exploited quantitatively, in absence of external mechanical load. Unusually fast propagation of solvent induced cracks in micro-machined sec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental mechanics 2013-07, Vol.53 (6), p.1057-1063
Hauptverfasser: Neff, H., Precker, C.E., Laborde, H.M., Precker, J.W., Barreto Neto, A.G.S., Lima, A.M.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamic evolution and mechanism of accelerated stress corrosion cracking (aSCC) in anacrylic (PMMA–poly methyl 2-methylpropenoate) polymer sample have been exploited quantitatively, in absence of external mechanical load. Unusually fast propagation of solvent induced cracks in micro-machined sections of the material has been monitored by microscopic video imaging of a test device. Crack emanation from milled micro-channels was precisely triggered by brief surface wetting with acetone solvent. The crack propagation period persists over a time span of approximately 1 min, comprises a final crack length of 0.2–0.3 mm, and an associated crack growth rate that decreases from to m/s. The temporal crack evolution scales in accord with 1-dim solvent diffusion along the flaw, super imposed with the residual stress field. Optically recorded birefringence, as well as finite element structure mechanic simulation, identified residual tensile stress in the crack zone as the driving force. The residual stress intensity factor was determined to 1–2 MPa  . The aSCC (accelerated stress corrosion cracking) in the material originates from a detrimental combination of residual stress, induced by surface milling; stress induced fast diffusion of the acetone solvent into the material and an associated degradation of structure-mechanic parameters.
ISSN:0014-4851
1741-2765
DOI:10.1007/s11340-012-9707-0