Assessment of Non-adiabatic Behaviour in Thermoelastic Stress Analysis of Composite Sandwich Panels
Thermoelastic stress analysis (TSA) is used to derive the surface stresses in large sandwich structure panels with honeycomb core and carbon fibre face sheets. The sandwich panels are representative of those used for secondary aircraft structure. The panels were subjected to a pressure load, similar...
Gespeichert in:
Veröffentlicht in: | Experimental mechanics 2012-09, Vol.52 (7), p.829-842 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Thermoelastic stress analysis (TSA) is used to derive the surface stresses in large sandwich structure panels with honeycomb core and carbon fibre face sheets. The sandwich panels are representative of those used for secondary aircraft structure. The panels were subjected to a pressure load, similar to that experienced in-service, using a custom designed test rig. To achieve the necessary adiabatic conditions for TSA, cyclic loading is regarded as an essential feature. As the panels were full-scale, the maximum loading frequency that could be imparted to the panels by the rig was 1 Hz, which is below the usual range recommended to achieve adiabatic behaviour. To assess the effectiveness of TSA at low frequencies two approaches to calibration are investigated and compared with the stress distribution obtained from independently validated FE models. The thermoelastic response was calibrated into stress data using thermoelastic constants derived experimentally from tensile strips of the sandwich panel face sheet material. It is shown that by using thermoelastic constants obtained from the tensile strips manufactured with the same lay-up as the sandwich panel face sheets, and at the same cyclic load frequency used in the full-scale tests, quantitative stress metrics can be derived from the TSA data. More significantly, a deeper insight into the importance of the thermal characteristics in TSA of laminated materials is provided. It is demonstrated that, for the material used in this work, it is possible to use the global material behaviour to obtain quantitative results when adiabatic conditions do not prevail. |
---|---|
ISSN: | 0014-4851 1741-2765 |
DOI: | 10.1007/s11340-012-9601-9 |