Creation of Low-Coordination Gold Sites on Au(111) Surface by 1,4-phenylene Diisocyanide Adsorption
The adsorption of CO on a saturated overlayer of 1,4-phenylene diisocyanide (PDI) adsorbed on a Au(111) surface at 300 K is studied using scanning tunneling microscopy (STM), density functional theory (DFT) calculations and reflection absorption infrared spectroscopy (RAIRS). The PDI forms closed-pa...
Gespeichert in:
Veröffentlicht in: | Topics in catalysis 2011-03, Vol.54 (1-4), p.20-25 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The adsorption of CO on a saturated overlayer of 1,4-phenylene diisocyanide (PDI) adsorbed on a Au(111) surface at 300 K is studied using scanning tunneling microscopy (STM), density functional theory (DFT) calculations and reflection absorption infrared spectroscopy (RAIRS). The PDI forms closed-packed rows of gold-PDI chains by extracting gold atoms from the Au(111) substrate. They are imaged by STM and the structure calculated by DFT. The adsorption of CO is studied on the low-coordination gold sites formed on the PDI-covered surface where it adsorbs exhibiting a CO stretching frequency of 2004 cm
−1
, consistent with adsorption on an atop site. It is found that CO is stable on heating the sample to ~150 K and is only removed from the surface by heating to ~180 K. Since low-coordination gold atoms are suggested to be the active catalytic sites on supported gold nanoclusters, “embossing” the surface to form similar low-coordination sites using PDI might offer a strategy for tailoring the catalytic activity of gold. |
---|---|
ISSN: | 1022-5528 1572-9028 |
DOI: | 10.1007/s11244-011-9642-9 |