The existence of weakly periodic Gibbs measures for the Potts model on a Cayley tree
We study the q-state Potts model on a Cayley tree of order k ≥ 2 . In the group representation of the Cayley tree for the ferromagnetic Potts model, we single out a set of index- 2 subgroups under which each weakly periodic Gibbs measure is translation invariant. For the anti-ferromagnetic Potts mod...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2014-09, Vol.180 (3), p.1019-1029 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the q-state Potts model on a Cayley tree of order k ≥
2
. In the group representation of the Cayley tree for the ferromagnetic Potts model, we single out a set of index-
2
subgroups under which each weakly periodic Gibbs measure is translation invariant. For the anti-ferromagnetic Potts model with k ≥
2
and q ≥
2
, we show that a weakly periodic Gibbs measure that is not translation invariant is not unique. |
---|---|
ISSN: | 0040-5779 1573-9333 |
DOI: | 10.1007/s11232-014-0196-4 |