The existence of weakly periodic Gibbs measures for the Potts model on a Cayley tree

We study the q-state Potts model on a Cayley tree of order k ≥ 2 . In the group representation of the Cayley tree for the ferromagnetic Potts model, we single out a set of index- 2 subgroups under which each weakly periodic Gibbs measure is translation invariant. For the anti-ferromagnetic Potts mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2014-09, Vol.180 (3), p.1019-1029
1. Verfasser: Rahmatullaev, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the q-state Potts model on a Cayley tree of order k ≥ 2 . In the group representation of the Cayley tree for the ferromagnetic Potts model, we single out a set of index- 2 subgroups under which each weakly periodic Gibbs measure is translation invariant. For the anti-ferromagnetic Potts model with k ≥ 2 and q ≥ 2 , we show that a weakly periodic Gibbs measure that is not translation invariant is not unique.
ISSN:0040-5779
1573-9333
DOI:10.1007/s11232-014-0196-4