Classical double, R-operators, and negative flows of integrable hierarchies
Using the classical double G of a Lie algebra g equipped with the classical R-operator, we define two sets of functions commuting with respect to the initial Lie-Poisson bracket on g * and its extensions. We consider examples of Lie algebras g with the “Adler-Kostant-Symes” R-operators and the two c...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2012-07, Vol.172 (1), p.911-931 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the classical double G of a Lie algebra
g
equipped with the classical R-operator, we define two sets of functions commuting with respect to the initial Lie-Poisson bracket on
g
* and its extensions. We consider examples of Lie algebras
g
with the “Adler-Kostant-Symes” R-operators and the two corresponding sets of mutually commuting functions in detail. Using the constructed commutative Hamiltonian flows on different extensions of
g
, we obtain zero-curvature equations with
g
-valued U-V pairs. The so-called negative flows of soliton hierarchies are among such equations. We illustrate the proposed approach with examples of two-dimensional Abelian and non-Abelian Toda field equations. |
---|---|
ISSN: | 0040-5779 1573-9333 |
DOI: | 10.1007/s11232-012-0086-6 |