Classical double, R-operators, and negative flows of integrable hierarchies

Using the classical double G of a Lie algebra g equipped with the classical R-operator, we define two sets of functions commuting with respect to the initial Lie-Poisson bracket on g * and its extensions. We consider examples of Lie algebras g with the “Adler-Kostant-Symes” R-operators and the two c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2012-07, Vol.172 (1), p.911-931
Hauptverfasser: Dubrovin, B. A., Skrypnyk, T. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the classical double G of a Lie algebra g equipped with the classical R-operator, we define two sets of functions commuting with respect to the initial Lie-Poisson bracket on g * and its extensions. We consider examples of Lie algebras g with the “Adler-Kostant-Symes” R-operators and the two corresponding sets of mutually commuting functions in detail. Using the constructed commutative Hamiltonian flows on different extensions of g , we obtain zero-curvature equations with g -valued U-V pairs. The so-called negative flows of soliton hierarchies are among such equations. We illustrate the proposed approach with examples of two-dimensional Abelian and non-Abelian Toda field equations.
ISSN:0040-5779
1573-9333
DOI:10.1007/s11232-012-0086-6