The ring of physical states in the M(2, 3) minimal Liouville gravity
We consider the M (2, 3) minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Vi...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2010-07, Vol.164 (1), p.929-946 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the M
(2, 3)
minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states. |
---|---|
ISSN: | 0040-5779 1573-9333 |
DOI: | 10.1007/s11232-010-0074-7 |