The ring of physical states in the M(2, 3) minimal Liouville gravity

We consider the M (2, 3) minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2010-07, Vol.164 (1), p.929-946
Hauptverfasser: Alekseev, O. V., Bershtein, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the M (2, 3) minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states.
ISSN:0040-5779
1573-9333
DOI:10.1007/s11232-010-0074-7