Twist Structures and Nelson Conuclei
Motivated by Kalman residuated lattices, Nelson residuated lattices and Nelson paraconsistent residuated lattices, we provide a natural common generalization of them. Nelson conucleus algebras unify these examples and further extend them to the non-commutative setting. We study their structure, esta...
Gespeichert in:
Veröffentlicht in: | Studia logica 2022-08, Vol.110 (4), p.949-987 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by Kalman residuated lattices, Nelson residuated lattices and Nelson paraconsistent residuated lattices, we provide a natural common generalization of them. Nelson conucleus algebras unify these examples and further extend them to the non-commutative setting. We study their structure, establish a representation theorem for them in terms of twist structures and conuclei that results in a categorical adjunction, and explore situations where the representation is actually an isomorphism. In the latter case, the adjunction is elevated to a categorical equivalence. By applying this representation to the original motivating special cases we bring to the surface their underlying similarities. |
---|---|
ISSN: | 0039-3215 1572-8730 |
DOI: | 10.1007/s11225-022-09988-z |