Interpolation in Extensions of First-Order Logic
We prove a generalization of Maehara's lemma to show that the extensions of classical and intuitionistic first-order logic with a special type of geometric axioms, called singular geometric axioms, have Craig's interpolation property. As a corollary, we obtain a direct proof of interpolati...
Gespeichert in:
Veröffentlicht in: | Studia logica 2020-06, Vol.108 (3), p.619-648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a generalization of Maehara's lemma to show that the extensions of classical and intuitionistic first-order logic with a special type of geometric axioms, called singular geometric axioms, have Craig's interpolation property. As a corollary, we obtain a direct proof of interpolation for (classical and intuitionistic) first-order logic with identity, as well as interpolation for several mathematical theories, including the theory of equivalence relations, (strict) partial and linear orders, and various intuitionistic order theories such as apartness and positive partial and linear orders. |
---|---|
ISSN: | 0039-3215 1572-8730 |
DOI: | 10.1007/s11225-019-09867-0 |