Interpolation in Extensions of First-Order Logic

We prove a generalization of Maehara's lemma to show that the extensions of classical and intuitionistic first-order logic with a special type of geometric axioms, called singular geometric axioms, have Craig's interpolation property. As a corollary, we obtain a direct proof of interpolati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia logica 2020-06, Vol.108 (3), p.619-648
Hauptverfasser: Gherardi, Guido, Maffezioli, Paolo, Orlandelli, Eugenio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a generalization of Maehara's lemma to show that the extensions of classical and intuitionistic first-order logic with a special type of geometric axioms, called singular geometric axioms, have Craig's interpolation property. As a corollary, we obtain a direct proof of interpolation for (classical and intuitionistic) first-order logic with identity, as well as interpolation for several mathematical theories, including the theory of equivalence relations, (strict) partial and linear orders, and various intuitionistic order theories such as apartness and positive partial and linear orders.
ISSN:0039-3215
1572-8730
DOI:10.1007/s11225-019-09867-0