Relation Formulas for Protoalgebraic Equality Free Quasivarieties; Pałasińska's Theorem Revisited

We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are Q-relation formulas for a protoalgebraic equality free quasivariety Q. They are the counterp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia logica 2013-08, Vol.101 (4), p.827-847
Hauptverfasser: Nurakunov, Anvar M., Stronkowski, Michał M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a new proof of the following Pałasińska's theorem: Every finitely generated protoalgebraic relation distributive equality free quasivariety is finitely axiomatizable. The main tool we use are Q-relation formulas for a protoalgebraic equality free quasivariety Q. They are the counterparts of the congruence formulas used for describing the generation of congruences in algebras. Having this tool in hand, we prove a finite axiomatization theorem for Q when it has definable principal Q-subrelations. This is a property obtained by carrying over the definability of principal subcongruences, invented by Baker and Wang for varieties, and which holds for finitely generated protoalgebraic relation distributive equality free quasivarieties.
ISSN:0039-3215
1572-8730
DOI:10.1007/s11225-013-9499-y