A fast unified algorithm for solving group-lasso penalize learning problems
This paper concerns a class of group-lasso learning problems where the objective function is the sum of an empirical loss and the group-lasso penalty. For a class of loss function satisfying a quadratic majorization condition, we derive a unified algorithm called groupwise-majorization-descent (GMD)...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2015-11, Vol.25 (6), p.1129-1141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper concerns a class of group-lasso learning problems where the objective function is the sum of an empirical loss and the group-lasso penalty. For a class of loss function satisfying a quadratic majorization condition, we derive a unified algorithm called groupwise-majorization-descent (GMD) for efficiently computing the solution paths of the corresponding group-lasso penalized learning problem. GMD allows for general design matrices, without requiring the predictors to be group-wise orthonormal. As illustration examples, we develop concrete algorithms for solving the group-lasso penalized least squares and several group-lasso penalized large margin classifiers. These group-lasso models have been implemented in an R package gglasso publicly available from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/web/packages/gglasso
. On simulated and real data, gglasso consistently outperforms the existing software for computing the group-lasso that implements either the classical groupwise descent algorithm or Nesterov’s method. |
---|---|
ISSN: | 0960-3174 1573-1375 |
DOI: | 10.1007/s11222-014-9498-5 |