A fast unified algorithm for solving group-lasso penalize learning problems

This paper concerns a class of group-lasso learning problems where the objective function is the sum of an empirical loss and the group-lasso penalty. For a class of loss function satisfying a quadratic majorization condition, we derive a unified algorithm called groupwise-majorization-descent (GMD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2015-11, Vol.25 (6), p.1129-1141
Hauptverfasser: Yang, Yi, Zou, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper concerns a class of group-lasso learning problems where the objective function is the sum of an empirical loss and the group-lasso penalty. For a class of loss function satisfying a quadratic majorization condition, we derive a unified algorithm called groupwise-majorization-descent (GMD) for efficiently computing the solution paths of the corresponding group-lasso penalized learning problem. GMD allows for general design matrices, without requiring the predictors to be group-wise orthonormal. As illustration examples, we develop concrete algorithms for solving the group-lasso penalized least squares and several group-lasso penalized large margin classifiers. These group-lasso models have been implemented in an R package gglasso publicly available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/web/packages/gglasso . On simulated and real data, gglasso consistently outperforms the existing software for computing the group-lasso that implements either the classical groupwise descent algorithm or Nesterov’s method.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-014-9498-5