Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques

This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science & education 2014-09, Vol.23 (9), p.1785-1809
Hauptverfasser: Jiang, Feng, McComas, William F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were analyzed: Scientific American , Discover magazine, winners of the Royal Society Winton Prize for Science Books , and books from NSTA’s list of Outstanding Science Trade Books. Computer analysis categorized passages in the selected documents based on their inclusions of NOS. Human analysis assessed the frequency, context, coverage, and accuracy of the inclusions of NOS within computer identified NOS passages. NOS was rarely addressed in selected document sets but somewhat more frequently addressed in the letters section of the two magazines. This result suggests that readers seem interested in the discussion of NOS-related themes. In the popular science books analyzed, NOS presentations were found more likely to be aggregated in the beginning and the end of the book, rather than scattered throughout. The most commonly addressed NOS elements in the analyzed documents are science and society and empiricism in science. Only one inaccurate presentation of NOS were identified in all analyzed documents. The text mining technique demonstrated exciting performance, which invites more applications of the technique to analyze other aspects of science textbooks, popular science writing, or other materials involved in science teaching and learning.
ISSN:0926-7220
1573-1901
DOI:10.1007/s11191-014-9703-0