Synthesis and characterisation of silver nanoparticles in viscous solvents and its transfer into non-polar solvents
Room temperature synthesis of silver nanoparticles has been successfully achieved by adding NaOH acting as an accelerator for the reduction of silver ions in ethylene glycol and glycerol without adding any external reducing agent. Highly monodisperse silver particles are obtained in the presence of...
Gespeichert in:
Veröffentlicht in: | Research on chemical intermediates 2010-06, Vol.36 (4), p.411-421 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Room temperature synthesis of silver nanoparticles has been successfully achieved by adding NaOH acting as an accelerator for the reduction of silver ions in ethylene glycol and glycerol without adding any external reducing agent. Highly monodisperse silver particles are obtained in the presence of various stabilisers such as PVP, SiO
2
and SDS. Nanoparticles with a mean diameter of 25 nm and a mean deviation of 2 nm could be obtained under experimental conditions. The silver nanoparticles so obtained could be easily transferred to chloroform containing CTAB, giving rise to CTAB stabilised silver nanoparticles having sizes of around 25 nm. The newly found role of OH
−
stabilisation was used to formulate a mechanism for the formation of silver nanoparticles in ethylene glycol and glycerol. In this mechanism, silver nanoparticles are stabilised in ethylene glycol by the adsorbed OH
−
ions. |
---|---|
ISSN: | 0922-6168 1568-5675 |
DOI: | 10.1007/s11164-010-0151-4 |