The adjoint of some linear maps constructed with the Rankin–Cohen brackets

Given a fixed modular form of level 1 we define a family of linear operators between spaces of cusp forms by use of the Rankin–Cohen brackets and we compute the adjoint maps of such family with respect to the usual Petersson inner product. This is done in terms of the effect on the Fourier developme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2015-04, Vol.36 (3), p.529-536
1. Verfasser: Herrero, Sebastián Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a fixed modular form of level 1 we define a family of linear operators between spaces of cusp forms by use of the Rankin–Cohen brackets and we compute the adjoint maps of such family with respect to the usual Petersson inner product. This is done in terms of the effect on the Fourier development of cusp forms. This is a generalization of a result due to W. Kohnen. As an application we prove certain relations among Fourier coefficients of cusp forms.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-013-9536-5