Congruences for bipartitions with odd parts distinct

Hirschhorn and Sellers studied arithmetic properties of the number of partitions with odd parts distinct. In another direction, Hammond and Lewis investigated arithmetic properties of the number of bipartitions. In this paper, we consider the number of bipartitions with odd parts distinct. Let this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2011-06, Vol.25 (2), p.277-293
Hauptverfasser: Chen, William Y. C., Lin, Bernard L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hirschhorn and Sellers studied arithmetic properties of the number of partitions with odd parts distinct. In another direction, Hammond and Lewis investigated arithmetic properties of the number of bipartitions. In this paper, we consider the number of bipartitions with odd parts distinct. Let this number be denoted by pod −2 ( n ). We obtain two Ramanujan-type identities for pod −2 ( n ), which imply that pod −2 (2 n +1) is even and pod −2 (3 n +2) is divisible by 3. Furthermore, we show that for any α ≥1 and n ≥0, is a multiple of 3 and is divisible by 5. We also find combinatorial interpretations for the two congruences modulo 2 and 3.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-010-9287-5