An integral representation of the Mordell-Tornheim double zeta function and its values at non-positive integers
A surface integral representation of the Mordell-Tornheim double zeta function is given, which is a direct analogue of a well-known integral representation of the Riemann zeta function of Hankel’s type. As an application, we investigate its values and residues at integers, where generalizations of a...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2008-11, Vol.17 (2), p.163-183 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A surface integral representation of the Mordell-Tornheim double zeta function is given, which is a direct analogue of a well-known integral representation of the Riemann zeta function of Hankel’s type. As an application, we investigate its values and residues at integers, where generalizations of a generating function of Bernoulli numbers naturally appear. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-008-9130-4 |