An integral representation of the Mordell-Tornheim double zeta function and its values at non-positive integers

A surface integral representation of the Mordell-Tornheim double zeta function is given, which is a direct analogue of a well-known integral representation of the Riemann zeta function of Hankel’s type. As an application, we investigate its values and residues at integers, where generalizations of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2008-11, Vol.17 (2), p.163-183
1. Verfasser: Komori, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A surface integral representation of the Mordell-Tornheim double zeta function is given, which is a direct analogue of a well-known integral representation of the Riemann zeta function of Hankel’s type. As an application, we investigate its values and residues at integers, where generalizations of a generating function of Bernoulli numbers naturally appear.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-008-9130-4