Quantum teleportation based on non-maximally entangled graph states
In recent years, the development of graph states has opened a bright prospect for the generation of multipartite entangled states. However, due to the influences of noises in the surroundings, the obtained graph states may not be maximally entangled, which have been rarely explored previously. In th...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2023-11, Vol.22 (11), Article 400 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, the development of graph states has opened a bright prospect for the generation of multipartite entangled states. However, due to the influences of noises in the surroundings, the obtained graph states may not be maximally entangled, which have been rarely explored previously. In this paper, we first consider how to generate one particular graph state which is named as the non-maximally entangled graph state. Next, we analyze the properties of the non-maximally entangled graph states and introduce two different kinds of graph states according to the entanglement of the non-maximally entangled graph states. Finally, we demonstrate how to teleport arbitrary unknown single-qubit state by using the non-maximally graph states. Compared with previous teleportation protocol, it demonstrates higher efficiency and lower operational complexity. We expect that our works can provide a theoretical instruction for the future study of the graph states. |
---|---|
ISSN: | 1573-1332 1573-1332 |
DOI: | 10.1007/s11128-023-04157-0 |