Count data stochastic frontier models, with an application to the patents-R&D relationship

This article introduces a new count data stochastic frontier model that researchers can use in order to study efficiency in production when the output variable is a count (so that its conditional distribution is discrete). We discuss parametric and nonparametric estimation of the model, and a Monte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of productivity analysis 2013-06, Vol.39 (3), p.271-284
Hauptverfasser: Fé, Eduardo, Hofler, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces a new count data stochastic frontier model that researchers can use in order to study efficiency in production when the output variable is a count (so that its conditional distribution is discrete). We discuss parametric and nonparametric estimation of the model, and a Monte Carlo study is presented in order to evaluate the merits and applicability of the new model in small samples. Finally, we use the methods discussed in this article to estimate a production function for the number of patents awarded to a firm given expenditure on R&D.
ISSN:0895-562X
1573-0441
DOI:10.1007/s11123-012-0286-y